

Workflow Systems for LQCD

SciDAC LQCD Software meeting,
Boston, Feb 2008

Fermilab, IIT, Vanderbilt

What is a workflow?
• A workflow is a reliably repeatable pattern of activity enabled

by a systematic organization of resources, defined roles and
mass, energy and information flows, into a work process that
can be documented and learned. Workflows are always
designed to achieve processing intents of some sort, such as
physical transformation, service provision, or information
processing.

• Hmm... mass? … energy? Must be physics related!

• A complex LQCD workflow: an LQCD analysis campaign to
compute hadronic 2- and 3-pt functions for each configuration
of a gauge ensemble.

LQCD 2-pt workflow
Foreach config in ensemble :

Scientific workflow management
systems

• Choices: Swift, Askalon, Kepler, Pegasus, Karajan, Triana,
Taverna, et al.

• "A Taxonomy of Workflow Management Systems for Grid
Computing"
http://www.gridbus.org/papers/WorkflowTaxonomy-JoG.pdf

• Systems designed for Grid computing.

• Are systems easy to use? NO
– Learning curve, added software complexity (and organization!).

• But I'm happy writing shell scripts, why change?
– We envision compelling benefits in using a workflow system...

http://www.gridbus.org/papers/WorkflowTaxonomy-JoG.pdf

Key workflow system requirements
• Users can exploit capacity computing while minimizing the burden of manually

monitoring hundreds of batch jobs.

• Efficient use of LQCD compute facilities by monitoring and managing resources
at the workflow level rather than only at the batch job level.

• Make a workflow specification easy to comprehend, reuse and extend.

• Eliminate the need for re-running any completed work upon resuming a stopped
(by plan or by exception) analysis campaign.

• Campaign execution histories; use to plan future campaigns.

• Record provenance of scientific results.

• LQCD workflow management system requirements document
http://whcdf03.fnal.gov/exp/attachments/WorkflowProject/FunctionalRequirements.doc

• Static dump of our wiki: http://whcdf03.fnal.gov/exp/WorkflowProject.html

http://whcdf03.fnal.gov/exp/attachments/WorkflowProject/FunctionalRequirements.doc
http://whcdf03.fnal.gov/exp/WorkflowProject.html

Highlights of the past year (or so)
• Wrote a functional requirements document

• On-going survey workflow systems:
– Kepler tutorial at SC06, video meeting with Kepler team.
– Face-to-face meetings with Swift team (ANL/U Chicago)
– Video and face-to-face meeting with Askalon team (Innsbruck)
– Phone meeting with Pegasus team (USC)
– Presentation by developer from Condor and DAGman team

• Selected two promising systems for a detailed evaluation
– Swift and Askalon
– With help from developers, installed on Fermilab clusters
– Coded a 2-pt LQCD workflow with help from developers
– Proposed a simpler collection of workflow “unit tests”
– Wrote a report detailing the evaluation

• A toy model workflow system in python
– Database schema to persist state and data provenance

From the Swift/Askalon evaluation
executive summary

None of the currently available workflow systems can be quickly adapted
for production use by LQCD, as several key requirements of the LQCD
projects are not addressed by any of those systems. Additional
development of specialized modules needs to be performed in-house to
adopt these generic workflow systems for production use by the LQCD
project.

The advantage of using a currently available workflow system is that we
could skip the initial and costly framework design and coding phase, thus
spending out coordinated efforts on developing extensions as opposed to
a completely custom solution. In making use of any existing workflow
system there is an associated learning curve, but it is critical that we
understand each workflow system’s architecture so that we can be
modify and/or effectively use those workflow system’s APIs.

http://whcdf03.fnal.gov/exp/attachments/WorkflowProject/WorkflowEvaluation.doc

http://whcdf03.fnal.gov/exp/attachments/WorkflowProject/WorkflowEvaluation.doc

Front- and back-end systems work
• Workflow composition and management

– Management of workflow templates
– Management of participants and their mapping to

instances of runable code
– Management of parameter sets (physics and system

related)
• Scheduling and execution

– Persistent workflow state
– Fault tolerance (cluster reliability project)
– Multiple workflows
– Workflow and job (two-level) scheduling

• Workflow histories and data provenance
– Management and user query facilities

Virtual Node(s)

SwiftScript

Abstract
computation

Virtual Data
Catalog

SwiftScript
Compiler

Specification Execution

Worker Nodes

Provenance
data

Provenance
dataProvenance

collector

launcher

launcher

file1

file2

file3

App
F1

App
F2

Scheduling

Execution Engine
(Karajan w/

Swift Runtime)

Swift runtime
callouts

C
C CC

Status reporting

Swift Architecture
Provisionin

g
Falkon

Resource
Provisioner

Amazon
EC2

Askalon architecture
GUI

Controller

AGWL interpreter

Run workflow instance (AGWL)

GT4 WSRF Container

Task Loop

Unscheduled
Tasks

Scheduled Tasks

 Scheduler

 Execution Framework

GT CoG Kit

Callbacks

Events Logging

Fault Handler
Restart
Job

Predictor

GRAM/Glare

 Askalon Components
database

Features overview

DB?dot filesdata provenance

relational DBlog filesexecution history

perform. prediction / retry
 limited workflow restarts

no / retry participants
limited workflow restarts

QoS / fault tolerance

oneoneworkflows / session

singlesingleusers per session

internal or ext. to GUIinternal to swift / karajanworkflow scheduler

control flowdata flowexecution model

UML graphs (AGWL)swiftscript (karajan XML)modeling language

AskalonSwiftFeature

HL 2-pt in swiftscript
String[] confList=["000102","000108"];
String kappaQ = "0.127";
String cSW = "1.75";
String mass = "0.005,0.007,0.01,0.02,0.03";
String[] fn = ["m0.005_000102 m0.007_000102 m0.01_000102 m0.02_000102 m0.03_000102",

 "m0.005_000108 m0.007_000108 m0.01_000108 m0.02_000108 m0.03_000108"];
String[] sources = ["local,0,0,0,0", "wavefunction,0,1S", "wavefunction,0,2S"];

foreach config,i in conflist {
Template template <“foo">; # gauge template name
Gauge gauge = stageIn(template, config);

Stag stags[] <fixed_array_mapper; files=fn>;
stags = stagSolve(gauge, mass, source);

StagArchive stagTar <simple_mapper; suffix=".tar">;
stagTar = archiveStag(mass, stags);

Quark[] q;
QuarkArchive[] cvtArch;
for i in [0:2] {

Clover clover = cloverSolve(kappaQ, cSW, gauge, sources[i]);
q[i] = cvt12x12(clover);
cvtArch[i] = archive(q[i]);

}

Quark antiQ = q[0];
file HH2ptcorr = twoPtHH(gauge, antiQ, q[0], q[1], q[2]);
foreach stag in stags {

file SH2ptcorr = twoPtSH(gauge, stag, q[0], q[1], q[2]);
}

}

HL 2-pt in Askalon

Live demo: Chroma regression test

Code: http://home.fnal.gov/~piccoli/swift/SwiftRegres-x64-Jan30.tar.gz

http://home.fnal.gov/~piccoli/swift/SwiftRegres-x64-Jan30.tar.gz

